Reinforcement Learning from Human Feedback (RLHF) is a popular technique used to align AI systems with human preferences by training them using feedback from people, rather than relying solely on predefined reward functions. Instead of coding every desirable behavior manually (which is often infeasible in complex tasks) RLHF allows models, especially large language models (LLMs), to learn from examples of what humans consider good or bad outputs. This approach is particularly important for tasks where success is subjective or hard…